Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Cell Rep Med ; 4(6): 101088, 2023 06 20.
Article in English | MEDLINE | ID: covidwho-2328298

ABSTRACT

The coronavirus (CoV) family includes several viruses infecting humans, highlighting the importance of exploring pan-CoV vaccine strategies to provide broad adaptive immune protection. We analyze T cell reactivity against representative Alpha (NL63) and Beta (OC43) common cold CoVs (CCCs) in pre-pandemic samples. S, N, M, and nsp3 antigens are immunodominant, as shown for severe acute respiratory syndrome 2 (SARS2), while nsp2 and nsp12 are Alpha or Beta specific. We further identify 78 OC43- and 87 NL63-specific epitopes, and, for a subset of those, we assess the T cell capability to cross-recognize sequences from representative viruses belonging to AlphaCoV, sarbecoCoV, and Beta-non-sarbecoCoV groups. We find T cell cross-reactivity within the Alpha and Beta groups, in 89% of the instances associated with sequence conservation >67%. However, despite conservation, limited cross-reactivity is observed for sarbecoCoV, indicating that previous CoV exposure is a contributing factor in determining cross-reactivity. Overall, these results provide critical insights in developing future pan-CoV vaccines.


Subject(s)
COVID-19 , Common Cold , Humans , T-Lymphocytes , SARS-CoV-2 , Cross Reactions
2.
Angew Chem Int Ed Engl ; : e202304298, 2023 May 22.
Article in English | MEDLINE | ID: covidwho-2322380

ABSTRACT

Mass pathogen screening is critical to preventing the outbreaks and spread of infectious diseases. The large-scale epidemic of COVID-19 and the rapid mutation of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus have put forward new requirements for virus detection and identification techniques. Here, we report a CRISPR-based Amplification-free Viral RNA Electrical Detection platform (CAVRED) for the rapid detection and identification of SARS-CoV-2 variants. A series of CRISPR RNA assays were designed to amplify the CRISPR-Cas system's ability to discriminate between mutant and wild RNA genomes with a single-nucleotide difference. The identified viral RNA information was converted into readable electrical signals through field-effect transistor biosensors for the achievement of highly sensitive detection of single-base mutations. CAVRED can detect the SARS-CoV-2 virus genome as low as 1 cp µL-1 within 20 mins without amplification, and this value is comparable to the detection limit of real-time quantitative polymerase chain reaction. Based on the excellent RNA mutation detection ability, an 8-in-1 CAVRED array was constructed and realized the rapid identification of 40 simulated throat swab samples of SARS-CoV-2 variants with a 95.0 % accuracy. The advantages of accuracy, sensitivity, and fast speed of CAVRED promise its application in rapid and large-scale epidemic screening.

3.
ACS Sens ; 8(5): 2096-2104, 2023 05 26.
Article in English | MEDLINE | ID: covidwho-2327385

ABSTRACT

The large-scale pandemic and fast evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have triggered an urgent need for an efficient and sensitive on-site nucleic acid testing method with single-nucleotide polymorphism (SNP) identification capability. Here, we report a multiplexed electrical detection assay based on a paperclip-shaped nucleic acid probe (PNprobe) functionalized field-effect transistor (FET) biosensor for highly sensitive and specific detection and discrimination of SARS-CoV-2 variants. The three-stem structure of the PNprobe significantly amplifies the thermodynamic stability difference between variant RNAs that differ in a single-nucleotide mutation. With the assistance of combinatorial FET detection channels, the assay realizes simultaneously the detection and identification of key mutations of seven SARS-CoV-2 variants, including nucleotide substitutions and deletions at single-nucleotide resolution within 15 min. For 70 simulated throat swab samples, the multiplexed electrical detection assay shows an identification accuracy of 97.1% for the discrimination of SARS-CoV-2 variants. Our designed multiplexed electrical detection assay with SNP identification capability provides an efficient tool to achieve scalable pandemic screening.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , Polymorphism, Single Nucleotide , SARS-CoV-2/genetics , Nucleic Acid Probes , Nucleotides
4.
The Science of the total environment ; 2023.
Article in English | EuropePMC | ID: covidwho-2305961

ABSTRACT

The COVID-19 pandemic resulted in unprecedented usage and elevated environmental concentrations of antiviral drugs. However, very limited studies have reported their sorption characteristics on environmental matrices. This study investigated the sorption of six COVID-19 related antivirals on Taihu Lake sediment with varied aqueous chemistry. Results showed that the sorption isotherms for arbidol (ABD), oseltamivir (OTV), and ritonavir (RTV) were linear, while the Freundlich model was the best-fit for ribavirin (RBV) and the Langmuir model for favipiravir (FPV) and remdesivir (RDV). Their distribution coefficient, Kd, varied between 5.051 L/kg to 248.6 L/kg with the sorption capacities ranked as FPV > RDV > ABD > RTV > OTV > RBV. Alkaline conditions (pH 9) and elevated cation strength (0.05 M to 0.1 M) decreased the sorption capacities of the sediment for these drugs. Thermodynamic analysis revealed that the spontaneous sorption of RDV, ABD, and RTV was between physisorption and chemisorption while FPV, RBV, and OTV were mainly physisorption. Functional groups related to hydrogen bonds, π – π interaction, and surface complexation were implicated in the sorption processes. These findings enhance our understanding about the environmental fate of COVID-19 related antivirals and provide basic data for predicting their distribution and risk in the environment. Graphical Unlabelled Image

5.
Emerg Infect Dis ; 29(5)2023 05.
Article in English | MEDLINE | ID: covidwho-2304974

ABSTRACT

Since late 2020, SARS-CoV-2 variants have regularly emerged with competitive and phenotypic differences from previously circulating strains, sometimes with the potential to escape from immunity produced by prior exposure and infection. The Early Detection group is one of the constituent groups of the US National Institutes of Health National Institute of Allergy and Infectious Diseases SARS-CoV-2 Assessment of Viral Evolution program. The group uses bioinformatic methods to monitor the emergence, spread, and potential phenotypic properties of emerging and circulating strains to identify the most relevant variants for experimental groups within the program to phenotypically characterize. Since April 2021, the group has prioritized variants monthly. Prioritization successes include rapidly identifying most major variants of SARS-CoV-2 and providing experimental groups within the National Institutes of Health program easy access to regularly updated information on the recent evolution and epidemiology of SARS-CoV-2 that can be used to guide phenotypic investigations.


Subject(s)
COVID-19 , SARS-CoV-2 , United States/epidemiology , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , National Institutes of Health (U.S.)
6.
Cell Rep Med ; 2(7): 100355, 2021 07 20.
Article in English | MEDLINE | ID: covidwho-2283611

ABSTRACT

The emergence of SARS-CoV-2 variants with evidence of antibody escape highlight the importance of addressing whether the total CD4+ and CD8+ T cell recognition is also affected. Here, we compare SARS-CoV-2-specific CD4+ and CD8+ T cells against the B.1.1.7, B.1.351, P.1, and CAL.20C lineages in COVID-19 convalescents and in recipients of the Moderna (mRNA-1273) or Pfizer/BioNTech (BNT162b2) COVID-19 vaccines. The total reactivity against SARS-CoV-2 variants is similar in terms of magnitude and frequency of response, with decreases in the 10%-22% range observed in some assay/VOC combinations. A total of 7% and 3% of previously identified CD4+ and CD8+ T cell epitopes, respectively, are affected by mutations in the various VOCs. Thus, the SARS-CoV-2 variants analyzed here do not significantly disrupt the total SARS-CoV-2 T cell reactivity; however, the decreases observed highlight the importance for active monitoring of T cell reactivity in the context of SARS-CoV-2 evolution.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , Young Adult
7.
Mol Biol Evol ; 40(3)2023 03 04.
Article in English | MEDLINE | ID: covidwho-2288520

ABSTRACT

With a possible origin from bats, the alphacoronavirus Porcine epidemic diarrhea virus (PEDV) causes significant hazards and widespread epidemics in the swine population. However, the ecology, evolution, and spread of PEDV are still unclear. Here, from 149,869 fecal and intestinal tissue samples of pigs collected in an 11-year survey, we identified PEDV as the most dominant virus in diarrheal animals. Global whole genomic and evolutionary analyses of 672 PEDV strains revealed the fast-evolving PEDV genotype 2 (G2) strains as the main epidemic viruses worldwide, which seems to correlate with the use of G2-targeting vaccines. The evolving pattern of the G2 viruses presents geographic bias as they evolve tachytely in South Korea but undergo the highest recombination in China. Therefore, we clustered six PEDV haplotypes in China, whereas South Korea held five haplotypes, including a unique haplotype G. In addition, an assessment of the spatiotemporal spread route of PEDV indicates Germany and Japan as the primary hubs for PEDV dissemination in Europe and Asia, respectively. Overall, our findings provide novel insights into the epidemiology, evolution, and transmission of PEDV, and thus may lay a foundation for the prevention and control of PEDV and other coronaviruses.


Subject(s)
Alphacoronavirus , Coronavirus Infections , Coronavirus , Porcine epidemic diarrhea virus , Animals , Swine , Porcine epidemic diarrhea virus/genetics , Phylogeny , Coronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary
8.
J Sep Sci ; 46(10): e2200953, 2023 May.
Article in English | MEDLINE | ID: covidwho-2287577

ABSTRACT

Qishen Gubiao granules, a traditional Chinese medicine preparation composed of nine herbs, have been widely used to prevent and treat coronavirus disease 2019 with good clinical efficacy. In the present study, an integrated strategy based on chemical profiling followed by network pharmacology and molecular docking was employed, to explore the active components and potential molecular mechanisms of Qishen Gubiao granules in the therapy of coronavirus disease 2019. Using the ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry technique, a total of 186 ingredients corresponding to eight structure types in Qishen Gubiao preparation were identified or structurally annotated with the elucidation of the fragmentation pathways in the typical compounds. The network pharmacology analysis screened 28 key compounds including quercetin, apigenin, scutellarein, luteolin and naringenin acting on 31 key targets, which possibly modulated signal pathways associated with immune and inflammatory responses in the treatment of coronavirus disease 2019. The molecular docking results observed that the top 5 core compounds had a high affinity for angiotensin-converting enzyme 2 and 3-chymotrypsin-like protease. This study proposed a reliable and feasible approach for elucidating the multi-components, multi-targets, and multi-pathways intervention mechanism of Qishen Gubiao granules against coronavirus disease 2019, providing a scientific basis for its further quality evaluation and clinical application.


Subject(s)
COVID-19 , Drugs, Chinese Herbal , Humans , Chromatography, High Pressure Liquid , Molecular Docking Simulation , Network Pharmacology , Medicine, Chinese Traditional , Mass Spectrometry
9.
Poult Sci ; 102(4): 102501, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2287484

ABSTRACT

Since 1999, QX-like (GI-19) avian infectious bronchitis viruses have been the predominant strains in China till now. Vaccination is the most effective way to control the disease, while live attenuated vaccine is widely used. In the current research, we evaluated the effect of several monovalent and bivalent live IBV vaccines in young chickens against the QX-like (GI-19) IBV infection. The results showed that monovalent 4/91 and bivalent Ma5+LDT3 vaccines could provide efficient protection in day-old chickens that reduced morbidity and mortality, ameliorated histopathology lesions, and reduced viral loads were observed. These data suggest that vaccination through nasal route with monovalent 4/91 or bivalent Ma5+LDT3 in day-old chickens could serve a safe and effective vaccination strategy for controlling QX-like (GI-19) infectious bronchitis virus.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Viral Vaccines , Animals , Chickens , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Poultry Diseases/prevention & control , Vaccine Efficacy , Vaccines, Attenuated/administration & dosage , Viral Vaccines/administration & dosage , Age Factors
10.
Structure ; 31(3): 253-264.e6, 2023 03 02.
Article in English | MEDLINE | ID: covidwho-2244577

ABSTRACT

The SARS-CoV-2 Omicron variant, with 15 mutations in Spike receptor-binding domain (Spike-RBD), renders virtually all clinical monoclonal antibodies against WT SARS-CoV-2 ineffective. We recently engineered the SARS-CoV-2 host entry receptor, ACE2, to tightly bind WT-RBD and prevent viral entry into host cells ("receptor traps"). Here we determine cryo-EM structures of our receptor traps in complex with stabilized Spike ectodomain. We develop a multi-model pipeline combining Rosetta protein modeling software and cryo-EM to allow interface energy calculations even at limited resolution and identify interface side chains that allow for high-affinity interactions between our ACE2 receptor traps and Spike-RBD. Our structural analysis provides a mechanistic rationale for the high-affinity (0.53-4.2 nM) binding of our ACE2 receptor traps to Omicron-RBD confirmed with biolayer interferometry measurements. Finally, we show that ACE2 receptor traps potently neutralize Omicron and Delta pseudotyped viruses, providing alternative therapeutic routes to combat this evolving virus.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , SARS-CoV-2 , Antibodies, Monoclonal , Protein Binding , Antibodies, Neutralizing
11.
Viruses ; 15(2)2023 01 23.
Article in English | MEDLINE | ID: covidwho-2216957

ABSTRACT

The Omicron variant is currently ravaging the world, raising serious concern globally. Monitoring genomic variations and determining their influence on biological features are critical for tracing its ongoing transmission and facilitating effective measures. Based on large-scale sequences from different continents, this study found that: (i) The genetic diversity of Omicron is much lower than that of the Delta variant. Still, eight deletions (Del 1-8) and 1 insertion, as well as 130 SNPs, were detected on the Omicron genomes, with two deletions (Del 3 and 4) and 38 SNPs commonly detected on all continents and exhibiting high-occurring frequencies. (ii) Four groups of tightly linked SNPs (linkage I-IV) were detected, among which linkage I, containing 38 SNPs, with 6 located in the RBD, increased its occurring frequency remarkably over time. (iii) The third codons of the Omicron shouldered the most mutation pressures, while the second codons presented the least flexibility. (iv) Four major mutants with amino acid substitutions in the RBD were detected, and further structural analysis suggested that the substitutions did not alter the viral receptor binding ability greatly. It was inferred that though the Omicron genome harbored great changes in antigenicity and remarkable ability to evade immunity, it was immune-pressure selected. This study tracked mutational signatures of Omicron variant and the potential biological significance of the SNPs, and the linkages await further functional verification.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/genetics , Mutation , Amino Acid Substitution
12.
Sustainability ; 14(23):15858, 2022.
Article in English | MDPI | ID: covidwho-2143560

ABSTRACT

Plastics are an important basic material for national economic development. In the post-COVID-19 stage, green supply chain management has attracted widespread attention. In order to achieve carbon neutrality in the plastics industry, we explored the drivers of supply chain decarbonization in the plastics industry from a microlevel corporate supply chain perspective. Four primary factors and 21 subfactors were identified from the existing literature, and after validation by 12 experts, the causal relationships between the factors were analyzed using the Gray-DEMATEL method. The Gray-DEMATEL method was applied to analyze the causal relationships between the factors. The findings show that joint promotion by stakeholders is the most significant cause driver and market impact is the most prominent driver in the first-level indicator, both of which have a significant impact on low-carbon production. 'Process optimization';, 'Top-management support';, 'Government regulations and support';, and 'Information disclosure';are the most significant cause secondary drivers under the corresponding Tier 1 indicator factors, respectively, to provide realistic guidance for companies engaged in the plastics industry to continue to develop a low-carbon circular economy to achieve net-zero emissions under the challenges of COVID-19. Therefore, companies need to focus on the drivers of most importance in this work and understand the interplay between factors.

13.
Humanit Soc Sci Commun ; 9(1): 424, 2022.
Article in English | MEDLINE | ID: covidwho-2133843

ABSTRACT

This study examines consumer fraud at the onset of the COVID-19 pandemic and provides novel evidence for the opportunity model of predatory victimization. Scammers have taken advantage of the COVID-19 pandemic shock to exploit victims who are already vulnerable and suffering. The number of fraud cases has greatly increased as COVID-19 spread across the U.S., consistent with the vulnerable-to-become-victimization hypothesis based on the opportunity model of predatory victimization. A Google Trends analysis shows that the increase in fraud and scams is attributable to victims' increased vulnerability rather than to their awareness of fraud and increased motivation to report scams. An improvement in financial literacy is associated with the reduction of finance-related fraud and scams. Finally, we provide important policy implications to protect people from fraud victimization.

14.
Frontiers in bioinformatics ; 2, 2022.
Article in English | EuropePMC | ID: covidwho-2102795

ABSTRACT

Since the beginning of the COVID-19 pandemic, SARS-CoV-2 has demonstrated its ability to rapidly and continuously evolve, leading to the emergence of thousands of different sequence variants, many with distinctive phenotypic properties. Fortunately, the broad application of next generation sequencing (NGS) across the globe has produced a wealth of SARS-CoV-2 genome sequences, offering a comprehensive picture of how this virus is evolving so that accurate diagnostics, reliable therapeutics, and prophylactic vaccines against COVID-19 can be developed and maintained. The millions of SARS-CoV-2 sequences deposited into genomic sequencing databases, including GenBank, BV-BRC, and GISAID, are annotated with the dates and geographic locations of sample collection, and can be aligned to and compared with the Wuhan-Hu-1 reference genome to extract their constellation of nucleotide and amino acid substitutions. By aggregating these data into concise datasets, the spread of variants through space and time can be assessed. Variant tracking efforts have initially focused on the Spike protein due to its critical role in viral tropism and antibody neutralization. To identify emerging variants of concern as early as possible, we developed a computational pipeline to process the genomic data and assign risk scores based on both epidemiological and functional parameters. Epidemiological dynamics are used to identify variants exhibiting substantial growth over time and spread across geographical regions. Experimental data that quantify Spike protein regions targeted by adaptive immunity and critical for other virus characteristics are used to predict variants with consequential immunogenic and pathogenic impacts. The growth assessment and functional impact scores are combined to produce a Composite Score for any set of Spike substitutions detected. With this systematic method to routinely score and rank emerging variants, we have established an approach to identify threatening variants early and prioritize them for experimental evaluation.

15.
Vaccines (Basel) ; 10(10)2022 Sep 29.
Article in English | MEDLINE | ID: covidwho-2066600

ABSTRACT

COVID-19 patients with hypertension have increased hospital complications and mortality rates. Moreover, these patients also have lower antibody titers after receiving the coronavirus disease (COVID-19) vaccine. Therefore, patients with hypertension should receive a COVID-19 vaccine booster. To promote the uptake of COVID-19 vaccine booster among hypertensive patients, this study investigated patients' willingness and factors that influence patients with hypertension to receive the COVID-19 vaccine booster. From July 2021 to August, 410 patients with hypertension were surveyed. Overall, 76.8% of patients were willing to receive the COVID-19 vaccine booster, as 82.7% of patients without comorbidities and 72.7% of patients with comorbidities were willing to receive the vaccine booster. The main factors that influenced the willingness of patients with hypertension to receive a booster dose were the preventive effect of the vaccine (χ2 = 52.827, p < 0.05), vaccine safety (χ2 = 42.423, p < 0.05), vaccine knowledge (χ2 = 7.831, p < 0.05), presence of comorbidities (χ2 = 4.862, p < 0.05), disease control (χ2 = 5.039, p < 0.05), and antihypertensive treatments (χ2 = 12.565, p < 0.05). This study's findings highlight the need to promote knowledge about booster vaccination among patients and health management. These measures would improve patients' willingness and knowledge about the vaccine and their health status, which are the main factors that influence patients' intention to receive booster vaccines.

16.
Eur J Pediatr ; 181(12): 4011-4017, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2035054

ABSTRACT

During the coronavirus disease 2019 (COVID-19) epidemic, many reports have indicated that children shed the virus longer than adults in stool, and that most of the children had mild or even asymptomatic infections, which increased the potential risk for feces to be a source of contamination and may play an important role in the spread of the virus. In this review, we collected relevant literature to summarize the duration of fecal viral shedding in children with COVID-19. We found that in about 60% of the cases, the fecal shedding time was between 28 and 42 days, which was much longer than that of adults. We further explored the possible reason for prolonged shedding and its the potential impact. The poor hand hygiene practices of children, their tendency to swallow sputum and/or saliva, the significant difference in expression of angiotensin-converting enzyme 2 (ACE2) in intestine between children and adults, and the variance in immune status and intestinal microbiome could be considered as potential casual agents of longer fecal viral shedding duration of children.   Conclusion: Children with COVID-19 show prolonged fecal shedding compared to adults. Several mechanisms may be involved in the longer fecal viral shedding. Viral shedding in the stool could be contributing to a possible route of transmission. Therefore, we think that further preventive measures in children should be taken to reduce the spread of the disease. What is Known: • Children with COVID-19 are more likely to have asymptomatic infections and to experience mild symptoms. • Some patients continue to shed the virus in feces, despite respiratory samples testing negative. What is New: • Children with COVID-19 carried a longer-term fecal viral shedding than adults. • The poor hand hygiene practices of children, their tendency to swallow sputum and/or saliva, the difference in expression of ACE2 in intestine between children and adults, and the variance in immune status and intestinal microbiome could be considered as potential casual agents of longer fecal viral shedding duration of children.


Subject(s)
COVID-19 , Child , Adult , Humans , Virus Shedding , Angiotensin-Converting Enzyme 2 , SARS-CoV-2 , Asymptomatic Infections , RNA, Viral , Feces
17.
Chinese Journal of Nosocomiology ; 32(9):1426-1429, 2022.
Article in English, Chinese | CAB Abstracts | ID: covidwho-2012888

ABSTRACT

OBJECTIVE: To collect aerosol from isolation wards of a designated COVID-19 hospital and conduct the nucleic acid test so as to provide scientific basis for prevention and control of COVID-19. METHODS: The air aerosol specimens were collected from layout sites in the isolation wards of the hospital by using bioaerosol collector, and the COVID-19 nucleic acid test was carried out for all of the specimens by using fluorescent polymerase chain reaction(PCR) and digital PCR. RESULTS: A total of 86 aerosol samples were collected, all of which were tested negative for the fluorescent PCR, the result of the digital PCR test showed that 14 air aerosol samples were tested positive for COVID-19 nucleic acid, with the detection rate 16.28%. The toilets of the patients and taking-off area of protective supplies of healthcare workers were the major places where the specimens were tested positive. The positive rate of nucleic acid test was significantly higher in in intensive care units than in common wards, however, there was no significant difference in the positive rate of nucleic acid among the aerosol specimens in different wards(?-2=7.871, P=0.248);there was no significant difference in the positive rate of nucleic acid of aerosol between the patients with CT value more than 30 and the patients with CT value no more than 30(?-2=0.232, P=0.630). CONCLUSION: There are still viral nucleic acids in the air aerosol of the isolation wards during the middle and late disease course of the COVID-19 patients, but the copy number of novel coronavirus is not large in the specimens. The detection rate of the viral nucleic acid is high in the aerosol of the wards that are crowed and poorly ventilated and are associated with the cases. It is necessary for the health care workers to take good care of themselves, keep the environment well ventilated and do a good job in environmental cleaning and disinfection and air purification.

18.
Journal of International Students ; 12:118-124, 2022.
Article in English | ProQuest Central | ID: covidwho-1999705

ABSTRACT

The COVID-19 pandemic has posed overwhelming challenges to higher education around the world. It has significantly affected the internationalization of Chinese higher education. The University of Nottingham Ningbo China (UNNC), as the first Sino-foreign cooperative university in the country, has witnessed a growing number of international students from 70 countries and regions in recent years. In response to the pandemic, the University has developed a series of strategies to support international students on campus and overseas. Through a case study approach, we explore the significant problems encountered by international students during this challenging time and the services and support provided by the University to help them cope with such challenges. It proceeds to reflect upon effective measures implemented so far and lessons learned. We aim to provide useful experience and advice for higher education professionals responding to issues pertaining to international student management and services in times of crisis.

19.
Signal Transduct Target Ther ; 7(1): 261, 2022 08 01.
Article in English | MEDLINE | ID: covidwho-1967592

ABSTRACT

Apolipoprotein E (APOE) plays a pivotal role in lipid including cholesterol metabolism. The APOE ε4 (APOE4) allele is a major genetic risk factor for Alzheimer's and cardiovascular diseases. Although APOE has recently been associated with increased susceptibility to infections of several viruses, whether and how APOE and its isoforms affect SARS-CoV-2 infection remains unclear. Here, we show that serum concentrations of APOE correlate inversely with levels of cytokine/chemokine in 73 COVID-19 patients. Utilizing multiple protein interaction assays, we demonstrate that APOE3 and APOE4 interact with the SARS-CoV-2 receptor ACE2; and APOE/ACE2 interactions require zinc metallopeptidase domain of ACE2, a key docking site for SARS-CoV-2 Spike protein. In addition, immuno-imaging assays using confocal, super-resolution, and transmission electron microscopies reveal that both APOE3 and APOE4 reduce ACE2/Spike-mediated viral entry into cells. Interestingly, while having a comparable binding affinity to ACE2, APOE4 inhibits viral entry to a lesser extent compared to APOE3, which is likely due to APOE4's more compact structure and smaller spatial obstacle to compete against Spike binding to ACE2. Furthermore, APOE ε4 carriers clinically correlate with increased SARS-CoV-2 infection and elevated serum inflammatory factors in 142 COVID-19 patients assessed. Our study suggests a regulatory mechanism underlying SARS-CoV-2 infection through APOE interactions with ACE2, which may explain in part increased COVID-19 infection and disease severity in APOE ε4 carriers.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Apolipoprotein E3/metabolism , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Binding Sites , COVID-19/genetics , Humans , Inflammation/genetics , Protein Binding , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL